DataSheet.es    


PDF XRT4500 Data sheet ( Hoja de datos )

Número de pieza XRT4500
Descripción MULTIPROTOCOL SERIAL NETWORK INTERFACE IC
Fabricantes Exar Corporation 
Logotipo Exar Corporation Logotipo



Hay una vista previa y un enlace de descarga de XRT4500 (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! XRT4500 Hoja de datos, Descripción, Manual

www.DataSheet4U.com
áç
XRT4500
SEPTEMBER 2002
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC
REV. 1.0.7
GENERAL DESCRIPTION
The XRT4500 is a fully integrated multiprotocol serial
interface. It supports all of the popular serial commu-
nication interface standards such as ITU-T V.35, ITU-
T V.36, EIA530A, RS232 (ITU-T V.28), ITU-T X.21
and RS449. It can easily be interfaced with most
common types of Serial Communications Controllers
(SCCs). This device contains eight receivers and
eight transmitters, in groups of six or seven. It is a
complete solution containing all of the required
source and load termination resistors in one 80-pin
TQFP package. The XRT4500 operates at higher
speeds (20MHz for V.35 and 256kbps for V.28).
The XRT4500 can be configured to operate in one of
the seven interface standards in either DTE, or DCE
modes of operation and power down mode. It fully
supports echoed clock as well as clock and data in-
version. Loopbacks are supported in DTE and DCE
modes of operation. This feature eliminates the need
for external circuitry for loopback implementation.
Control signals such as RI, RL, DCD, DTR, DSR are
protected against glitches by internal filters. These fil-
ters can be turned off. The XRT4500 provides an in-
ternal oscillator (clock signal) which can be used to
conduct standalone diagnostics of DTE equipment.
BLOCK DIAGRAM
Electrical Interfaces
V.10, V.11, V.35, V.28
V.10, V.11, V.35, V.28
V.10, V.11, V.35, V.28
High Speed Transceiver
RX1 TX1
RX2 TX2
RX3 TX3
Handshaking/Control Transceivers
Signals
TXD, RXD
High Speed Data
and Clock
TXC, RXC
High Speed Data
and Clock
SCTE Signals:
DCE Transmitter,
DTE Receiver
V.10, V.11, ---- , V.28
RX4
TX4
RTS, CTS
V.10, V.11, ---- , V.28
V.10, V.11, ---- , V.28
RX5 TX5
RX6 TX6
Diagnostic Transceivers
DTR, DSR
DCD Signals:
DCE Transmitter,
DTE Receiver
FEATURES
Pin Programmable Multiprotocol Serial Interface
V.35, V.36, EIA-530 A, RS232 (V.28), V.10, V.11, X.21
and RS449 Communication Interface Standards
V.28, V.10, V.11 and V.35 Electrical Interfaces are
‘CTR2’ Compliant
Contains On-Chip Source and Load Termination
Resistors
Contains Eight Receivers and Eight Transmitters
with Switchable DTE and DCE Modes
Glitch Filters on the Control Signals (Selectable)
+5V Single Power Supply with internal DC-DC
Converter
Full Support of Loopbacks, Data & Clock Inversion,
and Echoed Clock in DTE and DCE Modes
Full Support of Most Popular Types of HDLC Control-
lers (Single, Double, and Triple Clocks supported)
High-speed V.28 Driver: 256KHz
Internal Oscillator for Standalone DTE Loopback
Testing
Control Signals Can Be Registered and Non-regis-
tered
Control Signals Can Be Tri-stated for Bus-based
Designs
“Cable Safe” Operation Supported
ESD Protection Over ± 1KV Range
TTL Level Digital Inputs
TTL/CMOS Digital Outputs
APPLICATIONS
Data Service Units (DSU)
Channel Service Units (CSU)
Routers
Bridges
Access Equipment
V.10, ---- , ---- , V.28
RX7
TX7 LL, RL, RI (TM)
V.10, ---- , ---- , V.28
RX8
TX8 LL, RL, RI (TM)
Mode and Configuration
Control
Switching Regulator
DC-DC Converter
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com

1 page




XRT4500 pdf
XRT4500
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC
REV. 1.0.7
áç
FIGURE 22. ILLUSTRATION OF A “2-CLOCK DTE/DCE” INTERFACE ............................................................................ 51
FIGURE 23. THE BEHAVIOR OF THE TXC AND TXD SIGNALS AT THE DCE AND DTE SCCS, (DATA RATE = 1.0MBPS, “DCE-
TO-DTE” PROPAGATION DELAY = 160NS, “DTE-TO-DCE” PROPAGATION DELAY = 160NS)............................ 52
FIGURE 24. THE BEHAVIOR OF THE TXC AND TXD SIGNALS AT THE DCE AND DTE SCCS (DATA RATE = 1.544MBPS, DCE-
TO-DTE PROPAGATION DELAY = 160NS, DTE-TO-DCE PROPAGATION DELAY = 160NS) ............................. 52
FIGURE 25. ILLUSTRATION OF THE “ECHO-CLOCK” FEATURE WITHIN THE XRT4500 ................................................... 53
FIGURE 26. ILLUSTRATION OF THE WAVE-FORMS, ACROSS A DCE/DTE INTERFACE, WHEN THE ECHO-CLOCK FEATURE
(WITHIN THE XRT4500) IS USED AS DEPICTED IN FIGURE 25........................................................................ 54
1.3.5 THE “2CK/3CK” (2-CLOCK/3-CLOCK MODE - ENABLE/DISABLE SELECT INPUT PIN) ..................................... 54
FIGURE 27. ILLUSTRATION OF THE DCE/DTE INTERFACE, WITH THE DCE MODE XRT4500 OPERATING IN THE “2-CLOCK
MODE ........................................................................................................................................................ 55
1.3.6 THE “CLOCK INVERSION” (CK_INV) FEATURE ..................................................................................................... 55
FIGURE 28. ILLUSTRATION OF THE DCE MODE XRT4500 BEING CONFIGURED TO INVERT THE TXC SIGNAL................ 56
FIGURE 29. ILLUSTRATION OF THE DTE MODE XRT4500 BEING CONFIGURED TO INVERT THE TXC SIGNAL ................ 56
FIGURE 30. ILLUSTRATION OF THE DCE MODE XRT4500, WHICH IS OPERATING IN THE “2-CLOCK” MODE, AND INVERTING
THE “TXC” SIGNAL ..................................................................................................................................... 57
1.3.7 THE LATCH MODE OF OPERATION ........................................................................................................................ 58
1.3.8 THE REGISTERED MODE OF OPERATION ............................................................................................................. 58
FIGURE 31. AN ILLUSTRATION OF THE EFFECTIVE INTERFACE BETWEEN THE XRT4500 AND THE SCC/MICROPROCESSOR
WHEN THE “REGISTERED” MODE IS ENABLED ............................................................................................... 58
FIGURE 32. AN ILLUSTRATION OF THE NECESSARY GLUE LOGIC REQUIRED TO DESIGN A FEATURE SIMILAR TO THAT OFFERED
BY THE “REGISTERED” MODE, WHEN USING A DIFFERENT MULTI-PROTOCOL SERIAL NETWORK INTERFACE IC 59
1.3.9 THE INTERNAL OSCILLATOR .................................................................................................................................. 59
FIGURE 33. ILLUSTRATION OF THE INTERNAL OSCILLATORS WITHIN THE XRT4500..................................................... 60
1.3.10 GLITCH FILTERS...................................................................................................................................................... 60
1.3.11 DATA INVERSION .................................................................................................................................................... 60
1.3.12 DATA INTERLUDE ................................................................................................................................................... 60
2.0 RECEIVER AND TRANSMITTER SPECIFICATIONS .........................................................................60
3.0 V.10\V.28 OUTPUT PULSE RISE AND FALL TIME CONTROL .........................................................60
FIGURE 34. V.10 RISE/FALL TIME AS A FUNCTION OF RSLEW ................................................................................. 61
FIGURE 35. V.28 SLEW RATE OVER ± 3 V OUTPUT RANGE WITH 3 KW IN PARALLEL WITH 2500 PF LOAD AS A FUNCTION
OF RSLEW................................................................................................................................................ 61
4.0 THE HIGH-SPEED RS232 MODE ........................................................................................................61
5.0 INTERNAL CABLE TERMINATIONS ..................................................................................................62
6.0 OPERATIONAL SCENARIOS ..............................................................................................................62
7.0 APPLICATIONS INFORMATION .........................................................................................................62
FIGURE 36. RECEIVER TERMINATION ........................................................................................................................ 63
TABLE 6: RECEIVER SWITCHES ................................................................................................................................ 63
FIGURE 37. TRANSMITTER TERMINATION .................................................................................................................. 64
TABLE 7: TRANSMITTER SWITCHES........................................................................................................................... 64
FIGURE 38. TYPICAL V.10 OR V.28 INTERFACE (R1 = 10 KW IN V.10 AND 5 KW IN V.28) ........................................ 64
FIGURE 39. TYPICAL V.11 INTERFACE (TERMINATION RESISTOR, R1, IS OPTIONAL.).................................................. 64
FIGURE 40. TYPICAL V.35 INTERFACE ...................................................................................................................... 65
TABLE 8: MUX1 CONNECTION TABLE....................................................................................................................... 65
TABLE 9: MUX2 CONNECTION TABLE (RX4-RX7, TX4-TX7), OUTPUT VERSUS INPUT .............................................. 67
FIGURE 41. SCENARIO A, MUX2, (DCE/DTE = 0, LP = 0)....................................................................................... 68
FIGURE 42. SCENARIO B, MUX2, (DCE/DTE = 0, LP = 1), LOOP BACK NOT ENABLED ............................................. 69
FIGURE 43. SCENARIO C, MUX2, (DCE/DTE = 1, LP = 0)....................................................................................... 70
FIGURE 44. SCENARIO D, MUX2, (DCE/DTE = 1, LP = 1), LOOP BACK NOT ENABLED ............................................. 71
FIGURE 45. SERIAL INTERFACE SIGNALS AND CONNECTOR PIN-OUT ......................................................................... 72
FIGURE 46. SERIAL INTERFACE CONNECTOR DRAWINGS........................................................................................... 73
FIGURE 47. EIA-530 CONNECTION DIAGRAM FOR XRT4500 .................................................................................... 74
FIGURE 48. RS-232 CONNECTION DIAGRAM FOR XRT4500 ..................................................................................... 75
Scenarios 1 & 2 Normal: ‘3-clock’ DCE/DTE Interface Operation ...........................................................76
Input Pin Settings ....................................................................................................................................76
Scenario 3 &2 DTE Loop-Back Mode......................................................................................................77
Input Pin Settings ....................................................................................................................................77
Scenario 4 ...............................................................................................................................................78
Comments: DCE Loop-Back Mode .........................................................................................................78
II

5 Page





XRT4500 arduino
XRT4500
MULTIPROTOCOL SERIAL NETWORK INTERFACE IC
REV. 1.0.7
áç
PIN DESCRIPTIONS (CONT.)
PIN Signal
#
18 LP
19 TX8O
20 VDD
21 CPP
22 CPM
DTE
MODE
RLA
DCE
MODE
TYPE FUNCTION
I Loopback Command Input Pin – Active Low:
This active-low input pin permits the user to configure the
XRT4500 into a “Loop-Back” Mode. The exact loop-back will
depend upon whether the XRT4500 is operating in the DTE or
DCE Modes.
Setting this input pin to “LOW” enables the Loop-back Operation.
Setting this input pin to “HIGH” disables the Loop-back Operation.
This input pin contains an Internal 20Kpull-up to VDD.
RIA O Transmitter 8 – Single Ended Data Output to Line
The XRT4500 accepts a TTL level binary data stream, from the
local terminal equipment via the “TX8D” input pin (pin 17), and
outputs it, in either a V.10 or V.28 manner via this output pin. The
exact role that this output pin plays depends upon whether the
XRT4500 is operating in the DTE or DCE Modes.
If the XRT4500 is configured to operate in the DCE Mode:
This output pin will typically drive the state of either the “RI”
(Ring Indicator) or “TM” (Test Mode) signals to the Remote
Terminal Equipment.
If the XRT4500 is configured to operate in the DTE Mode:
This output pin will typically drive the state of the “RL” (Remote
Loop-back) signal to the Remote Terminal Equipment.
Analog VDD – For Receivers 4, 5, 6, 7 and 8.
Charge Pump Capacitor Pin: A 2.2µF tantalum capacitor must
be connected between pin 21 and pin 22.
Charge Pump Capacitor Pin: A 2.2µF tantalum capacitor must
be connected between pin 21 and pin 22.
NOTE: Signal names beginning with D_ are digital signals.
NOTE: Signal names ending with B and A are the positive
and negative polarities of differential signals respectively.
8

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet XRT4500.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
XRT4500MULTIPROTOCOL SERIAL NETWORK INTERFACE ICExar Corporation
Exar Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar