DataSheet.es    


PDF NCS2511 Data sheet ( Hoja de datos )

Número de pieza NCS2511
Descripción 1 Ghz Current Feedback Op Amp
Fabricantes ON Semiconductor 
Logotipo ON Semiconductor Logotipo



Hay una vista previa y un enlace de descarga de NCS2511 (archivo pdf) en la parte inferior de esta página.


Total 12 Páginas

No Preview Available ! NCS2511 Hoja de datos, Descripción, Manual

www.DataSheet4U.com
NCS2511
1 GHz Current Feedback
Op Amp
NCS2511 is a 1 GHz current feedback monolithic operational
amplifier featuring high slew rate and low differential gain and phase
error. The current feedback architecture allows for a superior
bandwidth and low power consumption.
Features
3.0 dB Small Signal BW (AV = +2.0, VO = 0.5 Vpp) 1 GHz Typ
Slew Rate 2500 V/ms
Supply Current 7.5 mA
Input Referred Voltage Noise 5.0 nV/ǸHz
THD 67 dB (f = 5.0 MHz, VO = 2.0 Vpp)
Output Current 120 mA
Pin Compatible with AD8001, TSH350, OPA681
This is a PbFree Device
Applications
High Resolution Video
Line Driver
HighSpeed Instrumentation
Wide Dynamic Range IF Amp
Set Top Box
NTSC/PAL/HDTV
6
3
0
3 VOUT = 2.0 VPP
6
9 AV = +2
VS = "5 V
12 RF = 270 W
RL = 150 W
15
10k 100k
VOUT = 0.5 VPP
1M 10M 100M
FREQUENCY (Hz)
1G
Figure 1. Frequency Response:
Gain (dB) vs. Frequency
Av = +2.0
10G
http://onsemi.com
5
1
SOT235
(TSOP5)
SN SUFFIX
CASE 483
MARKING
DIAGRAM
5
YB1AYW
G
1
YB1 = NCS2511
A = Assembly Location
Y = Year
W = Work Week
G = PbFree Package
SOT235 (TSOP5) PINOUT
OUT 1
VEE 2
+IN 3
5 VCC
4 IN
(Top View)
ORDERING INFORMATION
Device
Package
Shipping
NCS2511SNT1G SOT235
(TSOP5)
(PbFree)
3000/Tape & Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
© Semiconductor Components Industries, LLC, 2006
May, 2006 Rev. 2
1
Publication Order Number:
NCS2511/D

1 page




NCS2511 pdf
www.DataSheet4U.com
NCS2511
DC ELECTRICAL CHARACTERISTICS (VCC = +5.0 V, VEE = 5.0 V, TA = 40°C to +85°C, RL = 150 W to GND, RF = 270 W,
AV = +2.0, Enable is left open, unless otherwise specified).
Symbol
Characteristic
Conditions
Min Typ Max
DC PERFORMANCE
VIO Input Offset Voltage (Note 4)
DVIO/DT Input Offset Voltage
Temperature Coefficient
10 0 +10
6.0
IIB Input Bias Current
DIIB/DT
Input Bias Current Tempera-
ture Coefficient
INPUT CHARACTERISTICS
VCM
Input Common Mode Voltage
Range (Note 4)
+Input (NonInverting), VO = 0 V
Input (Inverting), VO = 0 V (Note 4)
+Input (NonInverting), VO = 0 V
Input (Inverting), VO = 0 V
"3.0
"3.0
"6.0
+40
10
"4.0
"35
"35
CMRR
Common Mode Rejection
Ratio (Note 4)
(See Graph)
40 50
RIN Input Resistance
+Input (NonInverting)
Input (Inverting)
150
70
CIN Differential Input Capacitance
OUTPUT CHARACTERISTICS
ROUT
Output Resistance
Closed Loop
Open Loop
1.0
0.1
30
VO Output Voltage Range
IO Output Current
POWER SUPPLY
VS Operating Voltage Supply
IS Power Supply Current
PSRR
Power Supply Rejection Ratio
(Note 4)
VO = 0 V
(See Graph)
"3.0
"90
40
"4.0
"120
10
7.5
55
4. Guaranteed by design and/or characterization.
Unit
mV
mV/°C
mA
nA/°C
V
dB
kW
W
pF
W
V
mA
V
mA
dB
http://onsemi.com
5

5 Page





NCS2511 arduino
www.DataSheet4U.com
NCS2511
General Design Considerations
The current feedback amplifier is optimized for use in
high performance video and data acquisition systems. For
current feedback architecture, its closedloop bandwidth
depends on the value of the feedback resistor. The
closedloop bandwidth is not a strong function of gain, as is
for a voltage feedback amplifier, as shown in Figure 23.
24
21
18
15
12
9
6
3
0
3
6
9
12
15 AV = +2
18 VCC = +5 V
21
24
RL = 150 W
10k 100k
100 W
150 W
400 W
450 W
500 W
1M 10M 100M
FREQUENCY (Hz)
270 W
330 W
1G 10G
Figure 23. Frequency Response vs. RF
The 3.0 dB bandwidth is, to some extent, dependent on
the power supply voltages. By using lower power supplies,
the bandwidth is reduced, because the internal capacitance
increases. Smaller values of feedback resistor can be used at
lower supply voltages, to compensate for this affect.
Feedback and Gain Resistor Selection for Optimum
Frequency Response
A current feedback operational amplifier’s key advantage
is the ability to maintain optimum frequency response
independent of gain by using appropriate values for the
feedback resistor. To obtain a very flat gain response, the
feedback resistor tolerance should be considered as well.
Resistor tolerance of 1% should be used for optimum
flatness. Normally, lowering RF resistor from its
recommended value will peak the frequency response and
extend the bandwidth while increasing the value of RF
resistor will cause the frequency response to roll off faster.
Reducing the value of RF resistor too far below its
recommended value will cause overshoot, ringing, and
eventually oscillation.
Since each application is slightly different, it is worth
some experimentation to find the optimal RF for a given
circuit. A value of the feedback resistor that produces
X0.1 dB of peaking is the best compromise between
stability and maximal bandwidth. It is not recommended to
use a current feedback amplifier with the output shorted
directly to the inverting input.
Printed Circuit Board Layout Techniques
Proper high speed PCB design rules should be used for all
wideband amplifiers as the PCB parasitics can affect the
overall performance. Most important are stray capacitances
at the output and inverting input nodes as it can effect
peaking and bandwidth. A space (3/16is plenty) should be
left around the signal lines to minimize coupling. Also,
signal lines connecting the feedback and gain resistors
should be short enough so that their associated inductance
does not cause high frequency gain errors. Line lengths less
than 1/4are recommended.
Video Performance
This device designed to provide good performance with
NTSC, PAL, and HDTV video signals. Best performance is
obtained with back terminated loads as performance is
degraded as the load is increased. The back termination
reduces reflections from the transmission line and
effectively masks transmission line and other parasitic
capacitances from the amplifier output stage.
ESD Protection
All device pins have limited ESD protection using internal
diodes to power supplies as specified in the attributes table
(see Figure 24). These diodes provide moderate protection
to input overdrive voltages above the supplies. The ESD
diodes can support high input currents with current limiting
series resistors. Keep these resistor values as low as possible
since high values degrade both noise performance and
frequency response. Under closedloop operation, the ESD
diodes have no effect on circuit performance. However,
under certain conditions the ESD diodes will be evident. If
the device is driven into a slewing condition, the ESD diodes
will clamp large differential voltages until the feedback loop
restores closedloop operation. Also, if the device is
powered down and a large input signal is applied, the ESD
diodes will conduct.
NOTE: Human Body Model for +IN and –IN pins are
rated at 0.8kV while all other pins are rated at
2.0kV.
VCC
External
Pin
Internal
Circuitry
VEE
Figure 24. Internal ESD Protection
http://onsemi.com
11

11 Page







PáginasTotal 12 Páginas
PDF Descargar[ Datasheet NCS2511.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
NCS25101.0 GHz Current Feedback Op Amp with Enable FeatureON Semiconductor
ON Semiconductor
NCS25111 Ghz Current Feedback Op AmpON Semiconductor
ON Semiconductor

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar