DataSheet.es    


PDF SIC631 Data sheet ( Hoja de datos )

Número de pieza SIC631
Descripción Integrated Power Stage
Fabricantes Vishay 
Logotipo Vishay Logotipo



Hay una vista previa y un enlace de descarga de SIC631 (archivo pdf) en la parte inferior de esta página.


Total 18 Páginas

No Preview Available ! SIC631 Hoja de datos, Descripción, Manual

www.vishay.com
SiC631
Vishay Siliconix
50 A VRPower® Integrated Power Stage
DESCRIPTION
The SiC631 is integrated power stage solutions optimized
for synchronous buck applications to offer high current, high
efficiency, and high power density performance. Packaged
in Vishay’s proprietary 5 mm x 5 mm MLP package, SiC631
enables voltage regulator designs to deliver up to 50 A
continuous current per phase.
The internal power MOSFETs utilizes Vishay’s
state-of-the-art Gen IV TrenchFET technology that delivers
industry benchmark performance to significantly reduce
switching and conduction losses.
The SiC631 incorporates an advanced MOSFET gate driver
IC that features high current driving capability, adaptive
dead-time control, an integrated bootstrap Schottky diode,
and zero current detection to improve light load efficiency.
The driver is also compatible with a wide range of PWM
controllers, supports tri-state PWM, and 5 V PWM logic.
A user selectable diode emulation mode (ZCD_EN#) is
included to improve the light load performance. The device
also supports PS4 mode to reduce power consumption
when system operates in standby state.
TYPICAL APPLICATION DIAGRAM
FEATURES
• Thermally enhanced PowerPAK® MLP55-31L
package
• Vishay’s Gen IV MOSFET technology and a
low-side MOSFET with integrated Schottky
diode
• Delivers in excess of 50 A continuous current, 55 A at
10 ms peak current
• High efficiency performance
• High frequency operation up to 2 MHz
• Power MOSFETs optimized for 19 V input stage
• 5 V PWM logic with tri-state and hold-off
• Supports PS4 mode light load requirement for IMVP8 with
low shutdown supply current (5 V, 3 μA)
• Under voltage lockout for VCIN
• Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
APPLICATIONS
• Multi-phase VRDs for computing, graphics card and
memory
• Intel IMVP-8 VRPower delivery
- VCORE, VGRAPHICS, VSYSTEM AGENT Skylake, Kabylake
platforms
- VCCGI for Apollo Lake platforms
• Up to 24 V rail input DC/DC VR modules
5 V VIN
PWM
controller
VCIN
ZCD_EN#
PWM
Gate
driver
BOOT
PHASE
VSWH
VOUT
Fig. 1 - SiC631 Typical Application Diagram
S16-1261-Rev. C, 27-Jun-16
1
Document Number: 67104
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

1 page




SIC631 pdf
www.vishay.com
DETAILED OPERATIONAL DESCRIPTION
PWM Input with Tri-state Function
The PWM input receives the PWM control signal from the VR
controller IC. The PWM input is designed to be compatible
with standard controllers using two state logic (H and L) and
advanced controllers that incorporate tri-state logic (H, L
and tri-state) on the PWM output. For two state logic, the
PWM input operates as follows. When PWM is driven above
VPWM_TH_R the low-side is turned ON and the high-side is
turned ON. When PWM input is driven below VPWM_TH_F the
high-side is turned OFF and the low-side is turned ON. For
tri-state logic, the PWM input operates as previously stated
for driving the MOSFETs when PWM is logic high and logic
low. However, there is an third state that is entered as the
PWM output of tri-state compatible controller enters its high
impedance state during shut-down. The high impedance
state of the controller’s PWM output allows the SiC631 to
pull the PWM input into the tri-state region (see definition of
PWM logic and tri-state, fig. 4). If the PWM input stays in this
region for the tri-state hold-off period, tTSHO, both high-side
and low-side MOSFETs are turned OFF. The function allows
the VR phase to be disabled without negative output voltage
swing caused by inductor ringing and saves a Schottky
diode clamp. The PWM and tri-state regions are separated
by hysteresis to prevent false triggering. The SiC631
incorporates PWM voltage thresholds that are compatible
with 5 V.
Diode Emulation Mode and PS4 Mode (ZCD_EN#)
The ZCD_EN# pin enables or disables diode emulation
mode. When ZCD_EN# is driven below VTH_ZCD_EN#_F, diode
emulation is allowed. When ZCD_EN# is driven above
VTH_ZCD_EN#_R, continuous conduction mode is forced.
Diode emulation mode allows for higher converter efficiency
under light load situations. With diode emulation active, the
SiC631 will detect the zero current crossing of the output
inductor and turn off the low-side MOSFET. This ensures
that discontinuous conduction mode (DCM) is achieved.
Diode emulation is asynchronous to the PWM signal,
therefore, the SiC631 will respond to the ZCD_EN# input
immediately after it changes state.
The ZCD_EN# pin can be floated resulting in a high
impedance state. High impedance on the input of ZCD_EN#
combined with a tri-stated PWM output will shut down the
SiC631, reducing current consumption to typically 5 μA.
This is an important feature in achieving the low standby
current requirements required in the PS4 state in ultrabooks
and notebooks.
Voltage Input (VIN)
This is the power input to the drain of the high-side power
MOSFET. This pin is connected to the high power
intermediate BUS rail.
SiC631
Vishay Siliconix
Switch Node (VSWH and PHASE)
The switch node, VSWH, is the circuit power stage output.
This is the output applied to the power inductor and output
filter to deliver the output for the buck converter. The PHASE
pin is internally connected to the switch node VSWH. This pin
is to be used exclusively as the return pin for the BOOT
capacitor.
Ground Connections (CGND and PGND)
PGND (power ground) should be externally connected
to CGND (control signal ground). The layout of the printed
circuit board should be such that the inductance separating
CGND and PGND is minimized. Transient differences due to
inductance effects between these two pins should not
exceed 0.5 V
Control and Drive Supply Voltage Input (VDRV, VCIN)
VCIN is the bias supply for the gate drive control IC. VDRV is
the bias supply for the gate drivers. It is recommended to
separate these pins through a resistor. This creates a low
pass filtering effect to avoid coupling of high frequency gate
drive noise into the IC.
Bootstrap Circuit (BOOT)
The internal bootstrap diode and an external bootstrap
capacitor form a charge pump that supplies voltage to the
BOOT pin. An integrated bootstrap diode is incorporated so
that only an external capacitor is necessary to complete the
bootstrap circuit. Connect a boot strap capacitor with one
leg tied to BOOT pin and the other tied to PHASE pin.
Shoot-Through Protection and Adaptive Dead Time
The SiC631 has an internal adaptive logic to avoid shoot
through and optimize dead time. The shoot through
protection ensures that both high-side and low-side
MOSFETs are not turned ON at the same time. The adaptive
dead time control operates as follows. The high-side and
low-side gate voltages are monitored to prevent the one
turning ON from tuning ON until the other's gate voltage is
sufficiently low (< 1 V). Built in delays also ensure that one
power MOS is completely OFF, before the other can be
turned ON. This feature helps to adjust dead time as gate
transitions change with respect to output current and
temperature.
Under Voltage Lockout (UVLO)
During the start up cycle, the UVLO disables the gate
drive holding high-side and low-side MOSFET gates low
until the supply voltage rail has reached a point at which
the logic circuitry can be safely activated. The SiC631 also
incorporates logic to clamp the gate drive signals to zero
when the UVLO falling edge triggers the shutdown of the
device.
S16-1261-Rev. C, 27-Jun-16
5
Document Number: 67104
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

5 Page





SIC631 arduino
www.vishay.com
Step 5: Signal Routing
CGND
CGND
SiC631
Vishay Siliconix
Step 6: Adding Thermal Relief Vias
VSWH
PGND
CGND
PGND
VIN
PGND
plane
1. Route the PWM / ZCD_EN# signal traces out of the top
left corner, next to DrMOS pin 1.
2. PWM is an important signal, both signal and return
traces should not cross any power nodes on any layer.
3. It is best to “shield” traces form power switching nodes,
e.g. VSWH, to improve signal integrity.
4. GL (pin 27) has been connected with GL pad internally
and does not need to connect externally.
VIN plane
1. Thermal relief vias can be added on the VIN and PGND
pads to utilize inner layers for high-current and thermal
dissipation.
2. To achieve better thermal performance, additional vias
can be added to VIN and PGND planes.
3. VSWH pad is a noise source and not recommended to put
vias on this plane.
4. 8 mil vias for pads and 10 mils vias for planes are the
optimal via sizes. Vias on pads may drain solder during
assembly and cause assembly issue. Please consult
with the assembly house for guideline.
Step 7: Ground Connection
CGND
VSWH
PGND
1. It is recommended to make a single connection between
CGND and PGND, this connection can be done on top layer.
2. It is recommended to make the entire first inner layer (next to
top layer) a ground plane and separate it into CGND and PGND
plane.
3. These ground planes provide shielding between noise
sources on top layer and signal traces on bottom layer.
S16-1261-Rev. C, 27-Jun-16
11
Document Number: 67104
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

11 Page







PáginasTotal 18 Páginas
PDF Descargar[ Datasheet SIC631.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
SIC631Integrated Power StageVishay
Vishay
SIC632Integrated Power StageVishay
Vishay
SIC632AIntegrated Power StageVishay
Vishay

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar