DataSheet.es    


PDF TSM1012 Data sheet ( Hoja de datos )

Número de pieza TSM1012
Descripción LOW CONSUMPTION VOLTAGE AND CURRENT CONTROLLER
Fabricantes STMicroelectronics 
Logotipo STMicroelectronics Logotipo



Hay una vista previa y un enlace de descarga de TSM1012 (archivo pdf) en la parte inferior de esta página.


Total 8 Páginas

No Preview Available ! TSM1012 Hoja de datos, Descripción, Manual

www.DataSheet4U.com
TSM1012
LOW CONSUMPTION VOLTAGE AND CURRENT
CONTROLLER FOR BATTERY CHARGERS AND ADAPTORS
s CONSTANT VOLTAGE AND CONSTANT
CURRENT CONTROL
s LOW CONSUMPTION
s LOW VOLTAGE OPERATION
s LOW EXTERNAL COMPONENT COUNT
s CURRENT SINK OUTPUT STAGE
s EASY COMPENSATION
s HIGH AC MAINS VOLTAGE REJECTION
VOLTAGE REFERENCE
s FIXED OUTPUT VOLTAGE REFERENCE
1.25V
s 0.5% AND 1% VOLTAGE PRECISION
DESCRIPTION
TSM1012 is a highly integrated solution for SMPS
applications requiring CV (constant voltage) and
CC (constant current) mode.
TSM1012 integrates one voltage reference and
two operational amplifiers (with ORed outputs -
common collectors).
The voltage reference combined with one
operational amplifier makes it an ideal voltage
controller. The other operational, combined with
few external resistors and the voltage reference,
can be used as a current limiter.
APPLICATIONS
s ADAPTERS
s BATTERY CHARGERS
ORDER CODE
Part
Number
Temperature Package Vref
Range
SD %
Marking
TSM1012I
TSM1012AI
TSM1012I
TSM1012AI
-40 to 105°C
-40 to 105°C
-40 to 105°C
-40 to 105°C
1 M1012
0.5 M1012A
1 M804
0.5 M805
D = Small Outline Package (SO) - also available in Tape & Reel (DT
S = Small Outline Package (MiniSO8) - also available in Tape & Reel (ST)
D
SO-8
(Plastic Package)
S
MiniSO-8
(Plastic Micropackage)
PIN CONNECTIONS (top view)
Vref
1
CC-
2
CC+
3
CV-
4
1,25V 28V
CC
CV
Vcc
8
Out
7
Gnd
6
CV+
5
February 2004
1/8

1 page




TSM1012 pdf
www.DataSheet4U.com
TSM1012
PRINCIPLE OF OPERATION AND APPLICATION HINTS
1. Voltage and Current Control
1.1. Voltage Control
The voltage loop is controlled via a first transcon-
ductance operational amplifier, the resistor bridge
R1, R2, and the optocoupler which is directly con-
nected to the output.
The relation between the values of R1 and R2
should be chosen as written in Equation 1.
R1 = R2 x Vref / (Vout - Vref)
Eq1
Where Vout is the desired output voltage.
To avoid the discharge of the load, the resistor
bridge R1, R2 should be highly resistive. For this
type of application, a total value of 100K(or
more) would be appropriate for the resistors R1
and R2.
As an example, with R2 = 100K, Vout = 4.10V,
Vref = 1.210V, then R1 = 41.9K.
Note that if the low drop diode should be inserted
between the load and the voltage regulation resis-
tor bridge to avoid current flowing from the load
through the resistor bridge, this drop should be
taken into account in the above calculations by re-
placing Vout by (Vout + Vdrop).
1.2. Current Control
The current loop is controlled via the second
trans-conductance operational amplifier, the
sense resistor Rsense, and the optocoupler.
Vsense threshold is achieved externally by a re-
sistor bridge tied to the Vref voltage reference. Its
middle point is tied to the positive input of the cur-
rent control operational amplifier, and its foot is to
be connected to lower potential point of the sense
resistor as shown on the following figure. The re-
sistors of this bridge are matched to provide the
best precision possible
The control equation verifies:
Rsense x Ilim = Vsense
eq2
Vsense = R5*Vref/(R4+R5)
Ilim = R5*Vref/(R4+R5)*Rsense eq2'
where Ilim is the desired limited current, and
Vsense is the threshold voltage for the current
control loop.
Note that the Rsense resistor should be chosen
taking into account the maximum dissipation
(Plim) through it during full load operation.
Plim = Vsense x Ilim.
eq3
Therefore, for most adapter and battery charger
applications, a quarter-watt, or half-watt resistor to
make the current sensing function is sufficient.
The current sinking outputs of the two trans-con-
nuctance operational amplifiers are common (to
the output of the IC). This makes an ORing func-
tion which ensures that whenever the current or
the voltage reaches too high values, the optocou-
pler is activated.
The relation between the controlled current and
the controlled output voltage can be described
with a square characteristic as shown in the fol-
lowing V/I output-power graph.
Figure 3 : Output voltage versus output current
Vout
Voltage regulation
TSM1012 Vcc : independent power supply
Secondary current regulation
0
TSM1012 Vcc : On power output
Primary current regulation
Iout
2. Compensation
The voltage-control trans-conductance operation-
al amplifier can be fully compensated. Both of its
output and negative input are directly accessible
for external compensation components.
An example of a suitable compensation network is
shown in Fig.2. It consists of a capacitor
Cvc1=2.2nF and a resistor Rcv1=22Kin series.
5/8

5 Page










PáginasTotal 8 Páginas
PDF Descargar[ Datasheet TSM1012.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
TSM101VOLTAGE AND CURRENT CONTROLLERSTMicroelectronics
STMicroelectronics
TSM101VOLTAGE AND CURRENT CONTROLLERSTMicroelectronics
STMicroelectronics
TSM1011Constant Voltage and Constant Current Controller for Battery Chargers and AdaptersSTMicroelectronics
STMicroelectronics
TSM1011AIDConstant Voltage and Constant Current Controller for Battery Chargers and AdaptersSTMicroelectronics
STMicroelectronics

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar