DataSheet.es    


PDF MAX1715 Data sheet ( Hoja de datos )

Número de pieza MAX1715
Descripción Ultra-High Efficiency / Dual Step-Down Controller for Notebook Computers
Fabricantes Maxim Integrated 
Logotipo Maxim Integrated Logotipo



Hay una vista previa y un enlace de descarga de MAX1715 (archivo pdf) en la parte inferior de esta página.


Total 28 Páginas

No Preview Available ! MAX1715 Hoja de datos, Descripción, Manual

19-1541; Rev 0; 1/00
EVAALVUAAILTAIOBNLEKIT
Ultra-High Efficiency, Dual Step-Down
Controller for Notebook Computers
General Description
The MAX1715 PWM controller provides the high effi-
ciency, excellent transient response, and high DC out-
put accuracy needed for stepping down high-voltage
batteries to generate low-voltage CPU core, I/O, and
chipset RAM supplies in notebook computers.
Maxim’s proprietary Quick-PWM™ quick-response,
constant-on-time PWM control scheme handles wide
input/output voltage ratios with ease and provides
100ns “instant-on” response to load transients while
maintaining a relatively constant switching frequency.
The MAX1715 achieves high efficiency at a reduced
cost by eliminating the current-sense resistor found in
traditional current-mode PWMs. Efficiency is further
enhanced by its ability to drive very large synchronous-
rectifier MOSFETs.
Single-stage buck conversion allows this device to
directly step down high-voltage batteries for the highest
possible efficiency. Alternatively, two-stage conversion
(stepping down the +5V system supply instead of the
battery) at a higher switching frequency allows the mini-
mum possible physical size.
The MAX1715 is intended for CPU core, chipset,
DRAM, or other low-voltage supplies as low as 1V. The
MAX1715 is available in a 28-pin QSOP package. For
applications requiring VID compliance or DAC control
of output voltage, refer to the MAX1710/MAX1711 data
sheet. For a single-output version, refer to the MAX1714
data sheet.
Applications
Notebook Computers
CPU Core Supply
Chipset/RAM Supply as Low as 1V
1.8V and 2.5V I/O Supply
Pin Configuration appears at end of data sheet.
Features
o Ultra-High Efficiency
o No Current-Sense Resistor (lossless ILIMIT)
o Quick-PWM with 100ns Load-Step Response
o 1% VOUT Accuracy over Line and Load
o Dual-Mode Fixed 1.8V/3.3V/Adj or 2.5V/Adj Outputs
o Adjustable 1V to 5.5V Output Range
o 2V to 28V Battery Input Range
o 200/300/420/540kHz Nominal Switching Frequency
o Over/Undervoltage Protection
o 1.7ms Digital Soft-Start
o Drives Large Synchronous-Rectifier FETs
o Power-Good Indicator
PART
MAX1715EEI
Ordering Information
TEMP. RANGE
-40°C to +85°C
PIN-PACKAGE
28 QSOP
5V INPUT
OUTPUT1
1.8V
Minimal Operating Circuit
VDD
VCC
ILIM1
ILIM2
ON1
ON2
BST1
V+
BST2
DH1 DH2
LX1 LX2
DL1 DL2
TON PGND
OUT1 OUT2
PGOOD
REF SKIP
FB1 AGND FB2
BATTERY
4.5V TO 28V
MAX1715
OUTPUT2
2.5V
Quick-PWM is a trademark of Maxim Integrated Products.
________________________________________________________________ Maxim Integrated Products 1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.
For small orders, phone 1-800-835-8769.

1 page




MAX1715 pdf
Ultra-High Efficiency, Dual Step-Down
Controller for Notebook Computers
ELECTRICAL CHARACTERISTICS (continued)
(Circuit of Figure 1, 4A components from Table 1, VCC = VDD = +5V, SKIP = AGND, V+ = 15V, TA = -40°C to +85°C, unless otherwise
noted.) (Note 1)
PARAMETER
CONDITIONS
MIN TYP MAX UNITS
Quiescent Battery Current (V+)
25 70 µA
Quiescent Supply Current
(VCC + VDD)
FB1 and FB2 forced above the regulation point
1100 1600 µA
Reference Voltage
No external REF load
1.97 2 2.03 V
Reference Load Regulation
Overvoltage Trip Threshold
IREF = 0 to 50µA
With respect to error comparator threshold
0.01 V
10 12.5 15
%
Output Undervoltage Threshold With respect to error comparator threshold
60 70 80 %
Current-Limit Threshold (positive
direction, fixed)
PGND - LX_, ILIM = VCC
75 100 125 mV
Current-Limit Threshold (positive PGND - LX_, ILIM resistor = 100k
direction, adjusted)
PGND - LX_, ILIM resistor = 400k
Thermal Shutdown Threshold Hysteresis = 10°C
32 50 62
mV
160 200 240
150 °C
VCC Undervoltage Lockout
Threshold
Logic Input High Voltage
Logic Input Low Voltage
Logic Input Current
Rising edge, hysteresis = 20mV, PWM disabled below
this level
ON_, SKIP
ON_, SKIP
SKIP, to deactivate OVP circuitry
4.1
2.4
-5
4.4 V
V
0.8 V
-1 mA
Note 1: Specifications to -40°C are guaranteed by design, and not production tested.
Note 2: When the inductor is in continuous conduction, the output voltage will have a DC regulation higher than the trip level by
50% of the ripple. In discontinuous conduction (SKIP = AGND, light load) the output voltage will have DC regulation
higher than the trip level by approximately 1.5% due to slope compensation.
Note 3: On-time and off-time specifications are measured from the 50% point at the DH pin with LX = PGND, VBST = 5V. Actual
in-circuit times may differ due to MOSFET switching speeds.
__________________________________________Typical Operating Characteristics
(Circuit of Figure 1, components from Table 1, VIN = +15V, SKIP = AGND, TON = unconnected, TA = +25°C, unless otherwise noted.)
EFFICIENCY vs. LOAD CURRENT
(1.8V, 4A COMPONENTS, SKIP = GND)
100
EFFICIENCY vs. LOAD CURRENT
(1.8V, 4A COMPONENTS, SKIP = VCC)
100
EFFICIENCY vs. LOAD CURRENT
(2.5V, 4A COMPONENTS, SKIP = GND)
100
V+ = +7V
90
80 V+ = +12V
V+ = +20V
70
80
V+ = +7V
60 V+ = +12V
40
V+ = +20V
20
V+ = +7V
90
V+ = +12V
80 V+ = +20V
70
60
0.01
0.1 1
LOAD CURRENT (A)
10
0
0.01
0.1 1
LOAD CURRENT (A)
60
10 0.01
0.1 1
LOAD CURRENT (A)
10
_______________________________________________________________________________________ 5

5 Page





MAX1715 arduino
Ultra-High Efficiency, Dual Step-Down
Controller for Notebook Computers
Table 1. Component Selection for Standard Applications
COMPONENT
2.5V at 4A
Input Range
7V to 20V
Frequency
255kHz
Fairchild
Q1 High-Side MOSFET Semiconductor
1/2 FDS6982A
Fairchild
Q2 Low-Side MOSFET Semiconductor
1/2 FDS6982A
1.8V at 4A
7V to 20V
345kHz
Fairchild
Semiconductor
1/2 FDS6982A
Fairchild
Semiconductor
1/2 FDS6982A
5V at 3A
7V to 20V
255kHz
Fairchild
Semiconductor
1/2 FDS6990A
Fairchild
Semiconductor
1/2 FDS6990A
D2 Rectifier
Nihon EP10QY03 Nihon EP10QY03 Nihon EP10QY03
L1 Inductor
C1 Input Capacitor
C2 Output Capacitor
4.4µH
3.1µH
6.8µH
Sumida CDRH125 Sumida CDRH125 Coiltronics UP2B
10µF, 25V
Taiyo Yuden
TMK432BJ106KM
10µF, 25V
Taiyo Yuden
TMK432BJ106KM
10µF, 25V
Taiyo Yuden
TMK432BJ106KM
470µF, 4V Sanyo
POSCAP 4TPB470M
470µF, 4V Sanyo
POSCAP 4TPB470M
330µF, 6V AVX
TPSV337M006R
0060
1.3V at 8A
7V to 20V
255kHz
3.3V at 1.5A
4.75V to 5.5V
600kHz
International
Rectifier IRF7811
International Rectifier
1/2 IRF7301
Fairchild
Semiconductor
FDS6670A
International Rectifier
1/2 IRF7301
Motorola
MBRS340T3
1.5µH Sumida
CEP125-1R5MC
3.3µH
TOKO D73LC
(2) 10µF, 25V
Taiyo Yuden
TMK432BJ106KM
100µF, 10V
Sanyo POSCAP
10TPA100M
(2) 470µF, 6V Kemet 100µF, 10V
T510X477108M0 Sanyo POSCAP
06AS
10TPA100M
Table 2. Component Suppliers
MANUFACTURER
USA PHONE
FACTORY FAX
[Country Code]
AVX 803-946-0690 [1] 803-626-3123
Central Semiconductor 516-435-1110 [1] 516-435-1824
Coilcraft
847-639-6400 [1] 847-639-1469
Coiltronics
561-241-7876 [1] 561-241-9339
Fairchild Semiconductor 408-822-2181 [1] 408-721-1635
International Rectifier
Kemet
310-322-3331 [1] 310-322-3332
408-986-0424 [1] 408-986-1442
Matsuo
714-969-2491 [1] 714-960-6492
Motorola
602-303-5454 [1] 602-994-6430
Murata
814-237-1431
800-831-9172
[1] 814-238-0490
NIEC (Nihon)
Sanyo
805-867-2555* [81] 3-3494-7414
619-661-6835 [81] 7-2070-1174
Siliconix
408-988-8000
800-554-5565
[1] 408-970-3950
Sprague
603-224-1961 [1] 603-224-1430
Sumida
Taiyo Yuden
TDK
TOKO
847-956-0666
408-573-4150
847-390-4461
800-PIK-TOKO
[81] 3-3607-5144
[1] 408-573-4159
[1] 847-390-4405
[1] 708-699-1194
*Distributor
The power input and +5V bias inputs can be connected
together if the input source is a fixed +4.5V to +5.5V
supply. If the +5V bias supply is powered up prior to
the battery supply, the enable signal (ON1, ON2) must
be delayed until the battery voltage is present to ensure
start-up. The +5V bias supply must provide VCC and
gate-drive power, so the maximum current drawn is:
IBIAS = ICC + f (QG1 + QG2) = 5mA to 30mA (typ)
where ICC is 1mA typical, f is the switching frequency,
and QG1 and QG2 are the MOSFET data sheet total
gate-charge specification limits at VGS = 5V.
Free-Running, Constant-On-Time PWM
Controller with Input Feed-Forward
The Quick-PWM control architecture is a pseudo-fixed-
frequency, constant-on-time current-mode type with
voltage feed-forward (Figure 3). This architecture relies
on the output filter capacitor’s ESR to act as the cur-
rent-sense resistor, so the output ripple voltage pro-
vides the PWM ramp signal. The control algorithm is
simple: the high-side switch on-time is determined sole-
ly by a one-shot whose period is inversely proportional
to input voltage and directly proportional to output volt-
age. Another one-shot sets a minimum off-time (400ns
typ). The on-time one-shot is triggered if the error com-
parator is low, the low-side switch current is below the
______________________________________________________________________________________ 11

11 Page







PáginasTotal 28 Páginas
PDF Descargar[ Datasheet MAX1715.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
MAX1710High-Speed / Digitally Adjusted Step-Down Controllers for Notebook CPUsMaxim Integrated
Maxim Integrated
MAX17101Step-Down ControllerMaxim Integrated Products
Maxim Integrated Products
MAX171058-String WLED DriverMaxim Integrated
Maxim Integrated
MAX1710810-Channel High-Voltage Scan Driver and VCOM AmplifierMaxim Integrated
Maxim Integrated

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar