DataSheet.es V048F160T015 Hoja de datos PDF



PDF V048F160T015 Datasheet ( Hoja de datos )

(V048x160x015) Voltage Transformation Module - Vicor Corporation

Número de pieza V048F160T015
Descripción (V048x160x015) Voltage Transformation Module
Fabricantes Vicor Corporation 
Logotipo Vicor Corporation Logotipo
Vista previa
Total 15 Páginas
		
V048F160T015 datasheet

1 Page

V048F160T015 pdf
Electrical Specifications (continued)
PRELIMINARY
Thermal
Symbol
RθJC
RθJB
RθJA
RθJA
Parameter
Over temperature shutdown
Thermal capacity
Junction-to-case thermal impedance
Junction-to-BGA thermal impedance
Junction-to-ambient (1)
Junction-to-ambient (2)
Min
125
Typ Max
130 135
0.61
1.1
2.1
6.5
5.0
Unit
°C
Ws/°C
°C/W
°C/W
°C/W
°C/W
Notes:
(1) V048K160T015 surface mounted in-board to a 2" x 2" FR4 board, 4 layers 2 oz Cu, 300 LFM.
(2) V048K160T015 with a 0.25"H heatsink surface mounted on FR4 board, 300 LFM.
Note
Junction temperature
V•I Chip Stress Driven Product Qualification Process
Test
High Temperature Operational Life (HTOL)
Temperature cycling
High temperature storage
Moisture resistance
Temperature Humidity Bias Testing (THB)
Pressure cooker testing (Autoclave)
Highly Accelerated Stress Testing (HAST)
Solvent resistance/marking permanency
Mechanical vibration
Mechanical shock
Electro static discharge testing – human body model
Electro static discharge testing – machine model
Highly Accelerated Life Testing (HALT)
Standard
JESD22-A-108-B
JESD22-A-104B
JESD22-A-103A
JESD22-A113-B
EIA/JESD22-A-101-B
JESD22-A-102-C
JESD22-A-110B
JESD22-B-107-A
JESD22-B-103-A
JESD22-B-104-A
EIA/JESD22-A114-A
EIA/JESD22-A115-A
Per Vicor Internal
Test Specification(1)
Dynamic cycling
Per Vicor internal
test specification(1)
Note:
(1) For details of the test protocols see Vicor’s website.
V•I Chip Ball Grid Array Interconnect Qualification
Test
BGA solder fatigue evaluation
Solder ball shear test
Standard
IPC-9701
IPC-SM-785
IPC-9701
Environment
125°C, Vmax, 1,008 hrs
-55°C to 125°C, 1,000 cycles
150°C, 1,000 hrs
Moisture sensitivity Level 5
85°C, 85% RH, Vmax, 1,008 hrs
121°C, 100% RH, 15 PSIG, 96 hrs
130°C, 85% RH, Vmax, 96 hrs
Solvents A, B & C as defined
20g peak, 20-2,000 Hz, test in X, Y & Z directions
1,500g peak 0.5 ms pulse duration, 5 pulses in 6 directions
Meets or exceeds 2,000 Volts
Meets or exceeds 200 Volts
Operation limits verified, destruct margin determined
Constant line, 0-100% load, -20°C to 125°C
Environment
Cycle condition: TC3 (-40 to +125°C)
Test duration: NTC-B (500 failure free cycles)
Failure through bulk solder or copper pad lift-off
vicorpower.com 800-735-6200
V•I Chip Voltage Transformation Module
V048K160T015
Rev. 1.0
Page 5 of 15

5 Page

V048F160T015 arduino
CONFIGURATION OPTIONS (continued)
PRELIMINARY
V•I Chip Voltage Transformation Module
Input reflected ripple
measurement point
F1
7A
Fuse
C1
47 µF
Al electrolytic
C2
0.47 µF
ceramic
14 V +–
Figure 16—VTM test circuit
+Out
+In
-Out
TM
VC
VTM
PC
+Out
K
Ro-In
-Out
R3
10 m
C3
10 µF
+
Load
Notes:
C3 should be placed close
to the load
R3 may be ESR of C3 or a
seperate damping resistor.
Application Note
Parallel Operation
In applications requiring higher current or redundancy, VTMs can be
operated in parallel without adding control circuitry or signal lines. To
maximize current sharing accuracy, it is imperative that the source and
load impedance on each VTM in a parallel array be equal. If VTMs are
being fed by an upstream PRM, the VC nodes of all VTMs must be
connected to the PRM VC.
To achieve matched impedances, dedicated power planes within the PC
board should be used for the output and output return paths to the
array of paralleled VTMs. This technique is preferable to using traces of
varying size and length.
The VTM power train and control architecture allow bi-directional
power transfer when the VTM is operating within its specified ranges.
Bi-directional power processing improves transient response in the
event of an output load dump. The VTM may operate in reverse,
returning output power back to the input source. It does so efficiently.
Thermal Management
The high efficiency of the VTM results in low power dissipation
minimizing temperature rise, even at full output current. The heat
generated within the internal semiconductor junctions is coupled
through very low thermal resistances, RθJC and RθJB (see Figure 17),
to the PC board allowing flexible thermal management.
CASE 1 Convection via optional Heat Sink to air.
In an environment with forced convection over the surface of a PCB
with 0.4" of headroom, a VTM with a 0.25" heat sink offers a simple
thermal management option. The total Junction to Ambient thermal
resistance of a surface mounted V048K160T015 with a heat sink
attached is 4.8 ºC/W in 300 LFM airflow, (see Figure 18).
At 16 Vout and full rated current (15.0A), the VTM dissipates
approximately 11 W per Figure 4. This results in a temperature rise of
approximately 53 ºC, allowing operation in an air temperature of
72 ºC without exceeding the 125 ºC max junction temperature.
CASE 2 Conduction via the PC board to air
The low Junction to BGA thermal resistance allows the use
of the PC board as a means of removing heat from the VTM.
Convection from the PC board to ambient, or conduction to a cold
plate, enable flexible thermal management options.
With a VTM mounted on a 2.0 in2 area of a multi-layer PC board with
appropriate power planes resulting in 8 oz of effective copper weight,
the Junction-to-BGA thermal resistance, RθJA, is 6.5 ºC/W in 300 LFM
of air. With a maximum junction temperature of 125 ºC and 11 W of
dissipation at full current of 15.0 A, the resulting temperature rise of
72 ºC allows the VTM to operate at full rated current up to a 53 ºC
ambient temperature. See thermal resistances on Page 9 for additional
details on this thermal management option.
Adding low-profile heat sinks to the PC board can lower the thermal
resistance of the PC board surrounding the VTM. Additional cooling
may be added by coupling a cold plate to the PC board with low
thermal resistance stand offs.
CASE 3 Combined direct convection to the air and conduction to the
PC board.
A combination of cooling techniques that utilize the power planes and
dissipation to the air will also reduce the total thermal impedance. This
is the most effective cooling method. To estimate the total effect of the
combination, treat each cooling branch as one leg of a parallel resistor
network.
vicorpower.com 800-735-6200
V•I Chip Voltage Transformation Module
V048K160T015
Rev. 1.0
Page 10 of 15

10 Page





PáginasTotal 15 Páginas
PDF Descargar[ V048F160T015.PDF ]

Enlace url


Hoja de datos destacado

Número de piezaDescripciónFabricantes
V048F160T015(V048x160x015) Voltage Transformation ModuleVicor Corporation
Vicor Corporation


Número de piezaDescripciónFabricantes
SSM2604

Low Power Audio Codec.

Analog Devices
Analog Devices
SLG3NB3331

32.768 kHz and MHz GreenCLK.

Silego
Silego
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices
SDC1741

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


Index : 0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z




www.DataSheet.es    |   2017   |  Contacto  |  Buscar